

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 16 (2005) 3107–3114

Tetrahedron: **Asymmetry**

Total synthesis of two novel brominated acetylenic diols (+)-diplyne C and E: stereoselective construction of the (E) -1-bromo-1-alkene

Benjamin W. Gung,* Craig Gibeau and Amanda Jones

Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA

Received 25 July 2005; accepted 9 August 2005

Abstract—The total syntheses of the enantiomers of two novel brominated polyacetylenic natural products diplynes C and E are reported. Pd and Cu(I)-catalyzed coupling reactions were employed to synthesize the diyne and enyne units. The stereochemistry of the terminal (E) -alkenyl bromide in diplyne C was constructed stereoselectively using Brown's hydroboration–bromination procedure. The stereochemistry of the internal (E)-double bond in diplyne E was established using a Takai reaction. The stereocenter was derived from D-mannitol.

2005 Elsevier Ltd. All rights reserved.

1. Introduction

Many naturally occurring organobromo compounds have been reported, most of which are from marine sources.^{[1](#page-7-0)} The first isolation of naturally occurring brominated acetylenic diols from the genus Diplastrella was recently reported (Fig. 1).^{[2](#page-7-0)} The extract, from which these novel compounds were isolated, exhibited inhibitory activity against HIV-1 integrase.

The diplynes differ in structure in the degree of unsaturation on the left hand (vinylbromide end) of the molecules. There is an element of symmetry in both diplynes A 1 and D 4 in the center portion of the structures as a 1,n-diyne unit. Recently, we reported the total synthesis of diplynes A 1 and D 4 by taking advantage of the $1, n$ diyne symmetry and by using Cadiot–Chodkiewicz and Sonogashira coupling reactions to construct the diyne and the enyne units, respectively.^{[3–5](#page-7-0)} While a similar strategy allows the construction of the diyne unit common to all five diplynes, the lack of symmetry in diplynes C 3 and E 5 demands a different strategy in the construction of the left-hand fragment. The presence of a terminal (E) -alkenyl bromide unit in diplyne C 3 and an internal (E) -double bond in diplyne E 5 requires

Figure 1. Acetylenic diols diplynes A–E 1–5 isolated from the Philippines sponge *Diplastrella* sp. The stereocenter in the natural $(-)$ -diplyne A 1 was established to be R by our previous synthesis.

additional synthetic considerations to achieve a stereoselective synthesis.

Initially, we chose to use the Takai reaction for the construction of the (E) -vinyl bromide unit in 3 because the

^{*} Corresponding author. Fax: +1 513 529 5715; e-mail: [gungbw@](mailto:gungbw@ muohio.edu) [muohio.edu](mailto:gungbw@ muohio.edu)

^{0957-4166/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2005.08.019

procedure could produce vinyl halide directly (Fig. 2).[6](#page-7-0) However, the reaction was not chemoselective when using a combination of $CrCl₂$ and $CHBr₃$.^{[6](#page-7-0)} After experimenting with a few other methods, the (E) -1-bromo-1alkene unit of diplyne C 3 was introduced through a stereoselective hydroboration–bromination procedure. Based on our experience in acetylenic chemistry, $3,7,8$ we anticipated the synthesis of diplyne E 5 to be brief by means of a Pd(0) and Cu(I) catalyzed coupling reactions.

Figure 2. Retrosynthetic analysis for diplynes C 3 and E 5.

2. Results and discussion

The synthesis of diplyne C 3 started with the preparation of the (E) -1-bromo-1-alkene fragment. Since this double bond is connected with an $Sp³$ carbon, the preferred method of Pd(0)-catalyzed coupling reactions using 1,2-dibromoethylene could not be employed. We therefore considered the most direct method of preparing an (E) -vinyl bromide, the Takai olefination.^{[6](#page-7-0)} Aldehyde 6 was treated with 6 equiv of $CrCl₂$ and 2 equiv of CHB r_3 in THF producing vinyl bromide 7 in 67% yield (Eq. 1). Unfortunately, the reaction gave a mixture of vinyl bromide and vinyl chloride, which could not be

separated by column chromatography. Our attempts to separate the vinyl bromide from vinyl chloride in subsequent steps were not successful.

Since CrBr₂ was not commercially available and our attempted in situ reduction of $CrBr_3$ with LiAlH₄ did not lead to any desired product, we turned our attention to a potentially selective reduction of the geminal dibromoalkene 9. A mixture of 9 with diethyl phosphite was subjected to microwave irradiation for 1 min (Eq. 2).^{[9](#page-7-0)} This procedure produced vinyl bromide 10 in 98% yield, but with virtually no stereoselectivity. A 1:1 mixture of the (E) - and (Z) -isomers was obtained, which again could not be separated by column chromatography in this or subsequent steps.

After encountering chemoselectivity problems with the Takai reaction and stereoselectivity problems with the reduction of dibromoalkene, we decided to use a procedure developed by Brown.^{10,11} This procedure involved a stereoselective preparation of the (E) -vinyl bromide starting from a terminal alkyne [\(Scheme 1](#page-2-0)). Once this method was chosen, it became apparent that the element of symmetry involving 1,*n*-diyne also existed here. Starting from the commercially available 1,11-dodecadiyne 11, a hydroboration reaction using catecholborane gave the desired boronic acid 13 upon workup with $H_2O¹⁰$ In order to reduce the amount of diboronic acid 14, only 0.25 equiv of catecholborane was used, which was added slowly over 12 h using a syringe pump. The boronic acids 13 and 14 were obtained as white solids which were subjected to a mercuration reaction with $Hg(OAc)_2$. The bromination– demercuration was carried out with $Br₂$ in pyridine.¹¹ The three-step procedure afforded the desired (E) -1-bromo-1-alkene 15 in 60% overall yield based on the recovered starting materials and an $(E):(Z)$ ratio of 96:4.

Vinyl bromide 15 was then coupled to bromoalkyne 17[8](#page-7-0) in the presence of CuCl to give diyne 18 in 45% yield. Removal of the isopropylidene protecting group using p-TsOH in MeOH led to the isolation of $(+)$ -diplyne C as a white solid in 92% yield. All spectroscopic data of the synthetic sample are consistent with that reported for the natural product. The synthetic diplyne C_3 had a specific rotation of $\alpha_D = +13.3$ in MeOH. The positive sign corresponds to an (S)-configuration since the stereocenter is derived from D-mannitol. Although the

$$
\begin{array}{llll}\n & & \text{OTHP} & \xrightarrow{\text{CrCl}_2, \text{CHBr}_3} & X & \text{OTHP} \\
 & & \xrightarrow{\text{R}} & & \xrightarrow{\text{R}} & 7, (7/8 = 1:1) & (1) \\
 & & \xrightarrow{\text{R}} & \text{Cl}_8 & \\
\end{array}
$$
\n
$$
\begin{array}{llll}\n & & \text{OTHP} & \\
 & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & & & & \xrightarrow{\text{R}} & \text{C1 8} \\
 & & & & & & & \xrightarrow{\text{
$$

specific rotation was not available for natural diplyne C 3 due to the small quantity isolated, the natural diplyne A was reported to have a specific rotation of $\alpha_{\text{D}} = -8.7$ in MeOH.^{[2](#page-7-0)} From a common starting material, p-mannitol, the synthetic samples of diplynes A, C, D, and E have the same (+)-sign in specific rotation corresponding to an (S) -configuration. It is reasonable to assume that the natural diplyne C has an (R) -configuration by analogy to diplyne A because the diplynes are similar in structure and have an identical origin in nature.^{[2,3](#page-7-0)}

Initially, a potentially more efficient convergent route was attempted for the synthesis of diplyne E 5 (Fig. 3), which would have involved the synthesis of the bromine-containing terminal enyne 19 by a Negishi coupling reaction between trimethylsilyl (TMS) acetylene and the commercially available cis/trans mixture of 1,2-dibromoethylene.^{[12](#page-7-0)} The synthesis of diplyne E 5 would have followed a Pd-catalyzed coupling reaction between the intermediates 19 and 20.

However, the synthesis of 19 did not proceed as planned. Carpita and Rossi have studied the reaction shown in [Scheme 2](#page-3-0) and concluded that compound 23 is more reactive than the starting material 22 and a second coupling occurred rapidly to give 24. [13](#page-7-0) Since no attempt was made to improve the yield of 23 by using excess 22 in the previous study, we conducted the reaction with up to 6 equiv of 22. The results proved disappointing. Rather than producing the desired product 23 as the major product, a mixture of 23 (13%) and the bis-coupling product 24 (57%) was obtained ([Scheme 2\)](#page-3-0). Therefore, we have confirmed the results of Carpita and Rossi that 23 is substantially more reactive than 22. Due to the low yield and the volatility of 23, the attempt at a convergent synthesis was abandoned.

Our alternative synthetic route ([Scheme 3](#page-3-0)) began with the reduction of the commercially available 6-heptynoic acid 25 to alcohol 26, which proceeded in 89% yield. The

Figure 3. Retrosynthetic analysis for a convergent synthesis of diplyne E 5.

Scheme 1.

Scheme 3.

cross coupling of 26 with bromoalkyne 17 in the presence of CuCl led to the desired diyne 27 in 63% yield. Next, a Swern oxidation of the primary alcohol cleanly produced aldehyde 28 in 87% yield.[14](#page-7-0) Takai olefination was then performed using 2 equiv of CHI₃ and 6 equiv of $CrCl₂$.^{[6](#page-7-0)} The resulting mixture was subjected to treatment of p-TsOH in MeOH. This allowed the isolation of diol 30 in 67% overall yield for the two steps. Vinyl iodide 30 was isolated as an 80:20 (E:Z) mixture in favor of the (E) -isomer. The addition of triisopropylsilyl (TIPS) acetylene under modified Sonogashira conditions afforded the TIPS protected enyne 31 in 74% yield (unoptimized).^{5,15} The $(E)(Z)$ ratio of 31 improved to 90:10 following the cross coupling reaction to TIPS

acetylene and a mixture of vinyl iodide 30 (21%) enriched with the cis isomer was recovered. These findings suggest that the (E) -isomer of vinyl iodide 30 is more reactive towards the coupling reaction and one could improve the $(E)/(Z)$ ratio of 31 by using excess vinyl iodide 30.

Next, removal of the TIPS group using TBAF provided terminal enyne 32, quantitatively. A Sonogashira coupling reaction between 32 and four equivalents of the commercially available mixture of cis/trans dibromoethylene 22 in the presence of $Pd(PPh_3)_4$ and CuI gave diplyne E 5 as a pale yellow solid in 42% yield.^{[5,16](#page-7-0)} As we reported previously, the Pd-catalyzed coupling to an

Scheme 2.

excess mixture of cis/trans dibromoethylene 22 preferentially produces the *trans*-isomer.^{[3](#page-7-0)} However, the synthetic sample contained ca. 10% of the internal cisdouble bond isomer originated from the Takai reaction in the preparation of 30. Except for this contamination, the synthetic diplyne E 5 exhibited nearly identical spectroscopic data to that reported for the natural product and gave a specific rotation $\lbrack \alpha \rbrack_{D} = +5.9$ in MeOH. Again due to the minute amount of the natural diplyne E isolated, no optical activity data were reported[.2](#page-7-0) As described above for diplyne C, the synthetic sample has an (S)-configuration while the natural diplyne E should have an (R) -configuration.

3. Conclusion

We have completed the first total syntheses of $(+)$ -diplynes C and E. (+)-Diplyne C was produced in an overall yield of ca. 22% using Brown's hydroboration–bromination procedure to establish the (E) -vinyl bromide stereochemistry. (+)-Diplyne E was synthesized stereoselectively by means of a Takai olefination and Pdcatalyzed cross coupling reactions in an overall yield of ca. 10%.

4. Experimental

All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware. Reagents were purchased from commercial sources and used without further purification. Flash column chromatographic separations were performed using silica gel $40-63 \mu m$, unless otherwise noted. Reactions were monitored with TLC and UV light. NMR spectra $(^1H, ^{13}C)$ were recorded on Bruker 200, 300, and 500 MHz spectrometers with $CDCl₃$ or $CD₃OD$ as the solvents. Melting points are not corrected.

4.1. 2-(11-Halo-undec-10-enyloxy)-tetrahydropyran 7 and 8

A suspension of $CrCl₂$ (11.3 g, 91.7 mmol) in dry THF (38 ml) was allowed to stir at rt under an atmosphere of nitrogen. To this was added dropwise a solution of aldehyde 6 (3.9 g, 15.3 mmol) and CHBr₃ (2.67 ml, 30.6 mmol) in dry THF (76 ml) at 0° C for a period of 30 min. The reaction was allowed to run an additional 2 h. Upon completion, the mixture was diluted with $H₂O$ and extracted three times with $Et₂O$, and then dried over $Na₂SO₄$. The resulting solution was filtered, concentrated, and purified over a silica gel column to give a mixture of the bromo- and chloro-containing products 7 and 8 in a ratio of approximately 1:1 (3.4 g , 67%). ¹H NMR (300 MHz, CDCl₃): δ 1.22 (8H, m), 1.29 (4H, m), 1.51 (6H, m), 1.65 (1H, m), 1.76 (1H, m), 1.97 (2H, q, $J = 7.4$ Hz), 3.32 (1H, dt, $J = 6.6$, 9.5 Hz), 3.44 (1H, m), 3.67 (1H, dt, $J = 6.8$, 9.5 Hz), 3.80 (1H, m), 4.52 $(1\text{H}, \text{t}, J = 2.7 \text{ Hz})$, 5.97 (2H, m). ¹³C NMR (75 MHz, CDCl3): d 19.5, 25.4, 26.1, 28.4, 28.7, 28.8, 29.1, 29.3, 29.4, 30.6, 32.8, 62.1, 67.5, 98.6, 103.9, 116.5, 133.9, 138.1.

4.2. 2-(11-Bromo-undec-10-enyloxy)-tetrahydro-pyran 10a and 10b

A mixture of EtONa (330 mg, 4.85 mmol), diethyl phosphite (0.62 ml) , and the dibromoalkene 9 (1.0 g) 2.4 mmol) in EtOH (12 ml) was placed in an Erlenmeyer flask in a microwave oven, operated at 60% of 1500 W, and irradiated for 1 min. The reaction mixture was then cooled to rt. The solvent was removed and the product was purified over a silica gel column affording the products as a 1:1 mixture of $(E):(Z)$ isomers (780 mg, 98%). ¹H NMR (300 MHz, CDCl₃): δ 1.22 (10H, m), 1.30 (2H, m), 1.48 (6H, m), 1.62 (1H, m), 1.74 (1H, m), 1.94 (1H, q, $J = 6.8$ Hz), 2.10 (1H, q, $J = 6.8$ Hz), 3.29 (1H, dt, $J = 6.6$, 9.5 Hz), 3.41 (1H, m), 3.65 (1H, dt, $J = 6.8, 9.5$ Hz), 3.78 (1H, m), 4.50 (1H, t, $J = 4.1$ Hz), 6.01 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δ 19.5, 25.3, 26.0, 27.9, 28.4, 28.7, 28.9, 29.1, 29.2, 29.6, 30.6, 32.7, 62.0, 67.4, 98.6, 107.4, 103.9, 134.8, 138.0.

4.3. Dodec-1-en-11-ynyl-boranediol 13

To diyne 11 (402 mg, 2.46 mmol) was added a 1 M solution of catecholborane $12 \ (65 \ \mu l, 0.61 \ \text{mmol})$ in THF (0.6 ml). This was added through the aid of a syringe pump over a period of 15 h, under an atmosphere of nitrogen in an oil bath at 70° C. The reaction was allowed to run for a total of 24 h, yielding boronic ester. The solvent was removed and $H₂O$ (0.6 ml) added and allowed to stir for 3 h. The solids were filtered, resulting in boronic acids 13 and 14 (117 mg, 92%) as a mixture of yellow and white solids.

Compound 13: ¹H NMR (300 MHz, CD₃OD): δ 1.30 (6H, m), 1.38 (2H, m), 1.48 (4H, m), 1.92 (1H, t, $J = 2.6$ Hz), 2.15 (2H, dt, $J = 2.6$, 6.9 Hz), 2.25 (2H, q, $J = 6.8$ Hz), 5.76 (1H, d, $J = 18.0$ Hz), 7.02 (3H, m), 7.17 (2H, m). ¹³C NMR (75 MHz, CD₃OD): δ 18.2, 25.4, 28.0, 28.3, 28.5, 28.6, 28.9, 29.0, 29.2, 35.9, 68.0, 84.5, 112.1 (2), 122.4 (2), 148.2, 157.8.

Compound 14: ¹H NMR (300 MHz, CD₃OD): δ 1.30 (8H, m), 1.40 (4H, m), 1.48 (2H, m) 2.14 (5H, m), 5.55 (1H, d, $J = 17.6$), 6.52 (1H, dt, $J = 6.5$, 17.7 Hz). ¹³C NMR (75 MHz, CD₃OD): δ 19.0, 29.6, 30.1, 30.2, 30.2, 30.4, 36.9, 69.3, 85.0, 116.3, 120.9, 153.9.

4.4. (E)-1-Bromo-dodec-1-en-11-yne 15

To a solution of boronic acids 13 and 14 (99 mg, 0.50 mmol) in THF (0.50 ml) at $-30 \degree$ C was added $Hg(OAc)₂$ (152 mg, 0.50 mmol). This was allowed to stir for 1 h at -30 °C. Next, a solution of Br₂ (30 μ l, 0.50 mmol) in pyridine (0.50 ml) was added at -30 °C. This was allowed to stir for 1 h. The solution was warmed to rt and slowly poured into an ice cold mixture of n-pentane and 6 M HCl. The layers were separated and the aqueous layer extracted twice with n-pentane. The combined organic layers were then washed with 6 N HCl, saturated aqueous $Na₂S₂O₃$, then dried over MgSO4. The resulting solution was filtered, concentrated and purified over silica gel column affording compounds 15 (80 mg, 60%) and 16 (9 mg, 8%) as yellow

oils. ¹H NMR (300 MHz, CDCl₃): δ 1.26 (4H, m), 1.35 $(4H, m)$, 1.48 $(4H, m)$, 1.91 $(1H, t, J = 2.6 Hz)$, 2.01 $(2H, g, J = 6.5 Hz)$, 2.15 (2H, dt, $J = 2.8$, 6.9 Hz), 5.97 (1H, d, $J = 13.5$ Hz), 6.12 (1H, dt, $J = 7.0$, 14.0 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 18.3, 28.3, 28.5, 28.6, 28.8, 28.9, 29.1, 32.8, 68.0, 84.6, 104.0, 138.1. IR: v cm^{-1} 3307, 3064, 2929, 2856, 2117, 1620, 1463, 1434, 1231, 940.

4.5. (13E)-4-(14-Bromo-tetradec-13-ene-1,3-diynyl)-2,2 dimethyl-[1,3]dioxolane 18

To a round bottom flask equipped with a stirring bar and under nitrogen was added MeOH (0.16 ml), a solution of NH₂OH·HCl (16 mg, 0.23 mmol) in 58 μ l of water, 70% aqueous solution of EtNH₂ (0.13 ml), and CuCl (2 mg, 0.025 mmol). Acetylene 15 (80 mg, 0.32 mmol) was added in one portion. Next, bromoalkyne 17 (67 mg, 0.32 mmol) was added over a period of 1 h keeping the temperature between 30 and 35 °C. The reaction was allowed to run for an additional 1.5 h at 40 °C, then a solution of KCN $(0.6 g)$ and $NH₄Cl$ (2.5 g) in H₂O (8 ml) was added with vigorous stirring. The product was extracted twice with $Et₂O$ and the combined organic layers washed with saturated aqueous $NH₄Cl$ and then dried over $MgSO₄$. The resulting solution was filtered, concentrated, and purified over a silica gel column, affording compound 18 as a pale yellow oil (54 mg, 45%) as well as the homocoupling product of compound 17 (21 mg, 17%). $[\alpha]_D = +28.6$ (MeOH). ¹H NMR (500 MHz, CDCl₃): δ 1.25 (8H, m), 1.34 (3H, s), 1.34 (2H, m), 1.46 (3H, s), 1.48 (2H, m), 2.00 (2H, q, $J = 6.7$ Hz), 2.24 (2H, t, $J = 7.0$ Hz), 3.91 (1H, dd, $J = 1.9$, 6.1 Hz), 4.12 (1H, dd, $J = 1.6$, 6.4 Hz), 4.73 (1H, t, $J = 6.3$ Hz), 5.98 (1H, d, $J = 13.4$), 6.14 (1H, dt, $J = 7.2$, 13.4 Hz). ¹³C NMR (125 MHz, CDCl3): d 19.2, 25.8, 26.0, 28.0, 28.5, 28.7, 28.8, 28.9, 29.1, 32.8, 64.0, 65.8, 69.7, 70.8, 72.7, 82.0, 104.0, 110.5, 138.1. IR: v cm⁻¹ 3064, 2927, 2855, 2256, 1620, 1458, 1323, 1235, 1065, 939. HRMS: Calcd for $C_{19}H_{27}BrO_2+Na$: 389.1092, found M+Na: 389.1109, M+2+Na: 391.1082.

4.6. (+)-Diplyne C 3

To a round bottom flask equipped with a stirring bar under nitrogen was loaded a solution of the protected diol 18 (30 mg, 0.08 mmol) in MeOH (1.6 ml). PTSA (2 mg, 8 μ mol) was added at 50 °C. The reaction was allowed to run for 24 h at 50 °C. Then, NaHCO_3 (17 mg, 0.16 mmol) was added while stirring for 15 min. The solids were removed by filtration and the product purified over a silica gel column, affording diplyne C as a white solid (mp 61–63 °C, 24 mg, 92%). $[\alpha]_D = +13.3$ (MeOH). ¹H NMR (500 MHz, CD₃OD): δ 1.24 (6H, m), 1.32 (4H, m), 1.44 (2H, m), 1.98 (2H, q, $J = 7.0$ Hz), 2.20 (2H, m), 3.46 (1H, dd, $J = 5.6$, 11.0 Hz), 3.51 (1H, dd, $J = 6.0$, 11.0 Hz), 4.27 (1H, dd, $J = 5.7, 6.0$ Hz), 6.05 (1H, d, $J = 14.0$ Hz), 6.10 (1H, dt, $J = 7.0$, 14.0 Hz). ¹³C NMR (125 MHz, CD₃OD): δ 19.6, 29.2, 29.7, 29.8, 29.9, 30.0, 30.2, 33.7, 64.5, 65.5, 67.0, 70.7, 75.7, 81.7, 105.0, 139.4. IR: $v \text{ cm}^{-1}$ 3377 (broad), 3054, 2931, 2856, 2254, 1620, 1422, 941, 739. HRMS: Calcd for $C_{16}H_{23}BrO_2+Na$, 349.0779: found M+Na: 349.0779, M+2+Na: 351.0748.

4.7. 6-Heptyn-1-ol 27

To a round bottom flask equipped with a stirring bar under nitrogen was added $LiAlH₄$ (903 mg, 23.8 mmol) and anhydrous Et_2O (75 ml) at 0 °C. Then, a solution of 6-heptynoic acid 25 (1.5 g, 11.9 mmol) in dry $Et₂O$ (15 ml) was added dropwise with vigorous stirring. The mixture was then allowed to warm to rt and stirred for an additional hour. Next, 1 M HCl (40 ml) was added dropwise and the reaction mixture stirred for an additional 0.5 h before being diluted with $Et₂O$. The layers were separated and the aqueous layer extracted three times with $Et₂O$. The organic layers were combined, dried over $MgSO₄$ and then filtered. The solvent was emoved under reduced pressure and the crude purified using a silica gel column to afford the product as a clear oil (1.18 g, 89%). ¹H NMR (300 MHz, CDCl₃): δ 1.52 $(6H, m)$, 1.91 (1H, t, $J = 2.7$ Hz), 2.15 (2H, dt, $J = 2.5, 6.6$ Hz), 3.59 (1H, t, $J = 6.4$ Hz). ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$: δ 18.74, 25.28, 28.59, 32.54, 63.03, 68.72, 84.83.

4.8. 9-(2,2-Dimethyl-[1,3]dioxolan-4-yl)-nona-6,8-diyne-1-ol 27

To a round bottom flask equipped with a stirring bar under an atmosphere of nitrogen was added a solution of NH₂OH·HCl (7.8 mg, 0.11 mmol) in H₂O (0.10 ml), MeOH (2.25 ml), a 70% aqueous solution of $EtNH₂$ (2.25 ml) , and CuCl $(11.1 \text{ mg}, 0.11 \text{ mmol})$. Then, alkyne 26 (251 mg, 2.24 mmol) was added in one portion. Next, a solution of bromoalkyne 17 (505 mg, 2.47 mmol) in MeOH (1 ml) was added over the course of 0.5 h using a syringe pump. The resulting mixture was stirred for an additional 1 h at rt. A solution of KCN $(0.43 g)$ and NH₄Cl (1.79 g) in H₂O (6 ml) was then added with vigorous stirring. The resulting mixture was extracted three times with $Et₂O$ and the organic layers dried over MgSO4. The solution was filtered and the solvent removed under reduced pressure. The crude mixture was purified over a silica gel column to afford a yellow oil (335 mg, 63%). $[\alpha]_D = +42.9$ (c 1.1, MeOH), ¹H NMR (300 MHz, CDCl₃): δ 1.35 (3H, s), 1.46 (3H, s), 1.52 (6H, m), 2.78 (2H, t, $J = 6.5$ Hz), 3.62 (2H, t, $J = 6.2$ Hz), 3.91 (1H, dd, $J = 6.2$, 8.0 Hz), 4.12 (1H, dd $J = 6.4$, 8.0 Hz). 4.73 (1H, t, $J = 6.2$ Hz). 13 C dd, $J = 6.4$, 8.0 Hz), 4.73 (1H, t, $J = 6.2$ Hz). NMR (75 MHz, CDCl₃): δ 19.64, 25.40, 26.31, 26.51, 28.26, 32.56, 63.11, 64.96, 66.25, 70.12, 71.16, 73.30, 82.18, 111.00. HRMS: Calcd for $C_{14}H_{20}O_3 + Na$: 259.1310, found M+Na: 259.1305.

4.9. 9-(2,2-Dimethyl-[1,3]dioxolan-4-yl)-nona-6,8-diynal 28

To a three-necked round bottom flask equipped with a stirring bar under nitrogen was added $(COCl)₂$ $(0.87 \text{ ml}, 1.73 \text{ mmol})$ in freshly distilled CH₂Cl₂ (7 ml). This solution was cooled to -78 °C and DMSO (0.13 ml, 1.88 mmol) added dropwise over a period of

5 min. After stirring for 10 min, a solution of 27 $(371 \text{ mg}, 1.57 \text{ mmol})$ in anhydrous CH_2Cl_2 (3 ml) was added dropwise. After an additional 15 min. at -78 °C, TEA (1.37 ml, 9.73 mmol) was added dropwise and the reaction mixture was warmed to -10 °C. Then, 1 M HCl (5 ml) was added and the aqueous layer extracted twice with $Et₂O$. The organic layers were combined and washed once with $H₂O$ before being dried over MgSO₄ and filtered. The solvent was removed under reduced pressure and the crude mixture purified over a silica gel column to afford an orange oil (319 mg, 87%). $\[\alpha\]_D = +33.7$ (c 0.5, MeOH), ¹H NMR (300 MHz, CDCl3): d 1.35 (3H, s), 1.46 (3H, s), 1.56 $(2H, m)$, 1.70 $(2H, m)$, 2.27 $(2H, t, J = 6.8 \text{ Hz})$, 2.44 (1H, dt, $J = 1.6$, 7.1 Hz), 3.91 (1H, dd, $J = 6.1$, 8.1 Hz), 4.12 (1H, dd, $J = 6.4$, 8.1 Hz), 4.73 (1H, t, $J = 6.2$ Hz), 9.72 (1H, d, $J = 1.5$ Hz). ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$: δ 19.49, 21.55, 26.29, 26.51, 27.82, 43.62, 65.34, 66.22, 70.10, 71.01, 73.55, 81.47, 111.02, 202.31. HRMS: Calcd for $C_{14}H_{18}O_3 + Na$: 257.1154, found M+Na: 257.1157.

4.10. 12-Iodo-dodec-11-ene-3,5-diyne-1,2-diol 30

To a round bottom flask equipped with a stirring bar under an atmosphere of nitrogen was added $CrCl₂$ $(4.4 \text{ g}, 35.9 \text{ mmol})$ and THF (60 ml) at 0°C . Next, a solution of aldehyde 28 (1.4 g, 5.98 mmol) and CHI₃ (4.7 g, 11.9 mmol) in anhydrous THF (30 ml) was added dropwise. The reaction mixture was stirred at 0° C for 4 h before being diluted with $H₂O$ (150 ml). The layers were separated and the aqueous layer extracted four times with $Et₂O$. The combined organic layers were dried over $Na₂SO₄$ and then filtered. The solvent was removed under reduced pressure and the crude mixture purified over a silica gel plug to remove any metal to afford a mixture of the protected vinyl iodide 29 and excess iodoform (2.48 g) . ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: δ 1.24 (3H, s), 1.46 (3H, s), 1.51 (4H, m), 2.04 (2H, m), 2.27 (2H, m), 3.92 (1H, dd, $J = 6.1$, 8.1 Hz), 4.13 (1H, dd, $J = 6.4$, 8.1 Hz), 5.99 (1H, dt, $J = 1.4$, 14.4 Hz), 6.47 (1H, dt, $J = 7.1$, 14.4 Hz).

The crude mixture containing the protected vinyl iodide 29 and CHI₃ was dissolved in MeOH (120 ml). Next, p -TsOH (114 mg, 0.59 mmol) was added and the mixture heated to 50 $\mathrm{^{\circ}C}$ while stirring under an atmosphere of nitrogen. After 24 h, NaHCO₃ $(1.27 \text{ g}, 11.9 \text{ mmol})$ was added, the reaction mixture was cooled to rt, and the solids were filtered. The solvent was removed under reduced pressure and the crude mixture was purified over a silica gel column to afford a pale yellow solid $(\text{mp} \quad 56-57 \text{ °C}, \quad 1.29 \text{ g}, \quad 67\% \quad \text{for} \quad \text{two} \quad \text{steps},$ $(E)(Z) = 80:20$. $[\alpha]_D = +8.9$ (c 0.6, MeOH), ¹H NMR $(300 \text{ MHz}, \text{ CDCI}_3)$: δ 1.50 (4H, m), 2.05 (2H, m), 2.27 (2H, t, $J = 6.5$ Hz), 2.59 (1H, s), 2.92 (1H, s), 3.65 (1H, dd, $J = 6.5$, 11.5 Hz), 3.73 (1H, dd, $J = 3.4$, 11.6 Hz), 4.46 (1H, t, $J = 3.9$ Hz), 5.99 (1H, dt, $J = 1.4$, 14.4 Hz), 6.46 (1H, dt, $J = 7.1$, 14.4 Hz). ¹³C NMR (75 MHz, CDCl3): δ 19.44, 27.64, 27.80, 35.82, 64.01, 64.95, 66.70, 71.51, 73.66, 75.44, 81.99, 146.27. HRMS: Calcd for $C_{12}H_{15}IO_2 + Na$: 341.0015, found M+Na: 341.0016.

4.11. 14-Triisopropylsilanyl-tetradec-11-ene-3,5,13 triyne-1,2-diol 31

To a round bottom flask equipped with a stirrer bar under nitrogen was added a solution of compound 30 (75 mg, 0.21 mmol) in THF (2 ml). To this solution was added TIPS acetylene (0.07 ml, 0.31 mmol), CuI $(0.4 \text{ mg}, \quad 0.002 \text{ mmol})$, and Pd(PPh₃)₂Cl₂ (1.5 mg, 0.002 mmol). Next, i -Pr₂NH (0.06 ml, 0.43 mmol) was added dropwise. The reaction was allowed to proceed for 3 h before quenching with saturated $NH₄Cl$ solution and diluting with $Et₂O$. The organic layer was washed one time with saturated NaCl, dried over MgSO₄, and filtered. The solvent was removed under reduced pressure and the crude mixture purified over a silica gel column to afford an orange oil (64 mg, 74%). $\lbrack \alpha \rbrack_{D} = +8.2$, $(c \ 0.4, \text{ MeOH})$, ¹H NMR (300 MHz, CDCl₃): δ 1.05 (21H, m), 1.51 (4H, m), 2.08 (2H, m), 2.27 (2H, m), 3.65 (1H, dd, $J = 6.5$, 11.3 Hz), 3.72 (1H, dd, $J = 2.6$, 11.1 Hz), 4.47 (1H, t, $J = 5.6$ Hz), 5.51 Hz (1H, dt, $J = 1.4$, 15.9 Hz), 6.14 (1H, dt, $J = 7.0$, 15.9 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 11.70, 19.03, 19.47, 27.85, 28.10, 32.80, 64.01, 64.87, 66.71, 71.52, 73.61, 82.07, 89.46, 106.14, 110.90, 145.14. HRMS: Calcd for $C_{23}H_{36}O_2Si + Na$: 395.2383, found M+Na: 395.2374.

4.12. Tetradec-11-ene-3,5,13,triyne-1,2-diol 32

To a round bottom flask equipped with a stirrer bar under nitrogen was added a solution of compound 31 (62 mg, 0.17 mmol) in THF (2 ml). TBAF (0.25 ml, 0.25 mmol) was added and the resulting mixture stirred for 2 h at rt. Next, ice water (10 ml) followed by 1 M HCl (1 ml) was added and the aqueous layer extracted two times with $Et₂O$. The combined organic layers were washed once with H_2O , dried over $MgSO_4$, then filtered. The solvent was removed under reduced pressure and the crude mixture purified over a silica gel column to afford a pale yellow solid (mp $46-48$ °C, 36 mg, 100%). $[\alpha]_D = +6.1$ (c 0.1, MeOH), ¹H NMR (300 MHz, CDCl₃): δ 1.51 (4H, m), 2.10 (2H, m), 2.27 (2H, m), 2.77 (1H, d, $J = 2.2$ Hz), 3.66 (1H, dd, $J = 6.3$, 11.4 Hz), 3.74 (1H, dd, $J = 3.9$, 11.5 Hz), 4.48 (1H, dd, $J = 4.0, 6.0$ Hz), 5.45 (1H, dq, $J = 1.9, 15.9$ Hz), 6.20 $(1H, dt, J = 7.0, 15.9 \text{ Hz})$. ¹³C NMR (75 MHz, CDCl₃): d 19.44, 27.77, 27.99, 32.75, 64.04, 64.90, 66.73, 71.57, 73.63, 76.31, 82.03, 82.73, 109.50, 146.29. HRMS: Calcd for $C_{14}H_{16}O_2 + Na$, 239.1048: found M+Na: 239.1046.

4.13. (+)-Diplyne E 5

To a round bottom flask equipped with a stirring bar under nitrogen was added a solution of compound 32 (120 mg, 0.56 mmol), dibromoethylene 22 (413 mg, 2.22 mmol), $Pd(PPh_3)_4$ (39 mg, 0.034 mmol), and CuI $(13 \text{ mg}, 0.067 \text{ mmol})$ in TEA (9.3 ml) . The resulting mixture was stirred at rt for 16 h, before being diluted with $Et₂O$ and filtered over a pad of florisil using excess $Et₂O$. The solvent was removed under reduced pressure and the crude mixture purified over a silica gel column to afford a pale yellow solid (mp $80-82$ °C, 74 mg, 42%). $[\alpha]_D = +5.9$ (c 0.15, MeOH), UV (MeOH): 287, 272, 214 nm. ¹H NMR (500 MHz, CD₃OD): δ 1.53 (4H,

m), 2.16 (2H, m), 2.31 (2H, m), 3.54 (1H, dd, $J = 6.8$, 11.2 Hz), 3.58 (1H, dd, $J = 5$, 11.2 Hz), 4.36 (1H, t, $J = 6.2$ Hz), 5.61 (1H, dq, $J = 2.0$, 15.9 Hz), 6.16 (1H, dt, $J = 7.1$, 15.8 Hz), 6.37 (1H, dd, $J = 2.1$, 14 Hz), 6.78 (1H, d, $J = 14$ Hz). ¹³C NMR (125 MHz, CD₃OD): d 19.56, 28.76, 28.90, 33.57, 64.58, 65.79, 67.14, 70.71, 76.00, 81.51, 85.42, 91.43, 110.79, 118.65, 118.97, 146.42. HRMS: Calcd for $C_{16}H_{17}BrO_2 + Na$, 343.0310: found M+Na: 343.0318, M+2+Na: 345.0272.

Acknowledgement

Acknowledgement is made to the donors of the Petroleum Research Fund (PRF 36841-AC4) administered by the American Chemical Society.

References

- 1. Gribble, G. W. Chem. Soc. Rev. 1999, 28, 335–346.
- 2. Lerch, M. L.; Harper, M. K.; Faulkner, D. J. J. Nat. Prod. 2003, 66, 667–670.
- 3. Gung, B. W.; Gibeau, C.; Jones, A. Tetrahedron: Asymmetry 2004, 15, 3973–3977.
- 4. Brandsma L. Preparative Acetylenic Chemistry; 2nd ed. Elsevier: New York, 1988; Vol. 34.
- 5. Sonogashira, K. J. Organomet. Chem. 2002, 653, 46–49.
- 6. Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408–7410.
- 7. Gung, B. W.; Kumi, G. J. Org. Chem. 2004, 69, 3488– 3492.
- 8. Gung, B. W.; Dickson, H. Org. Lett. 2002, 4, 2517–2519.
- 9. Kuang, C. X.; Senboku, H.; Tokuda, M. Tetrahedron 2002, 58, 1491–1496.
- 10. Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1972, 94, 4370–4371.
- 11. Brown, H. C.; Larock, R. C.; Gupta, S. K.; Rajagopalan, S.; Bhat, N. G. J. Org. Chem. 1989, 54, 6079–6084.
- 12. Negishi, E. I. Acc. Chem. Res. 1982, 15, 340–348.
- 13. Carpita, A.; Rossi, R. Tetrahedron Lett. 1986, 27, 4351– 4354.
- 14. Marx, M.; Tidwell, T. T. J. Org. Chem. 1984, 49, 788–793. 15. Kim, S.; Kim, S.; Lee, T.; Ko, H.; Kim, D. Org. Lett. 2004, 6, 3601–3604.
- 16. Bruce, M. I.; Hall, B. C.; Kelly, B. D.; Low, P. J.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1999, 3719–3728.